博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
在首次发布三周之后,MLflow迎来了0.2版本
阅读量:6077 次
发布时间:2019-06-20

本文共 1031 字,大约阅读时间需要 3 分钟。

在今年的Spark+AI峰会上,MLflow团队推出了MLflow,一个开源的用于简化机器学习生命周期的平台。从首次发布到现在的三周时间里,已经有很多数据科学家和工程师对使用MLflow和为MLflow贡献代码感兴趣。MLFlow的GitHub仓库已经有180个分支,其中有十几个贡献者提交了问题和拉取请求。此外,上周参加由该团队举办的第一次MLflow聚会的人数接近100人。

\\

昨天,该团队正式宣布推出MLflow 0.2版本,这一版本包含了由内部客户和开源用户提出的一些最被期待的功能。按照MLflow快速入门指南给出的提示,可以使用pip install mlflow来安装MLflow 0.2。以下内容将介绍该版本的主要新功能。

\\

内置TensorFlow集成

\\

MLflow让开发者可以基于任意机器学习库进行模型训练,只要可以将它们包装在Python函数中,但对于常用的库,MLflow团队希望能够提供内置的支持。该版本增加了mlflow.tensorflow包,借助这个包,开发者可以轻松地将TensorFlow模型记录到MLflow跟踪服务器中。在记录模型之后,可以立即将其传给受MLflow支持的各种部署工具(例如本地REST服务器、Azure ML服务或Apache Spark)。

\\

以下示例显示了用户如何记录经过训练的TF模型,并使用内置功能和pyfunc抽象进行部署。

\\

训练环境:保存训练过的的TF模型

\\
\# 将estimator保存成SavedModel格式。\estimator_path = your_regressor.export_savedmodel(model_dir, \receiver_fn)\ \# 记录导出的SavedModel。\# signature_def_key: 签名的名称,在加载SavedModel时使用\#                    参考: \(https://www.tensorflow.org/serving/signature_defs).\# artifact_path: 保存构件的位置\mlflow.tensorflow.log_saved_model(saved_model_dir=estimator_path,\                                  signature_def_key=\"predict\

转载地址:http://bdagx.baihongyu.com/

你可能感兴趣的文章
Asp.Net SignalR GlobalHost外部通知
查看>>
在AspNetMvc中使用日志面板. Logdashboard 1.1beta
查看>>
AccessHelper
查看>>
0709作业
查看>>
sql server 查询出的结果集,拼接某一列赋值给一个变量
查看>>
大脑记忆 过程
查看>>
16进制的简单运算http://acm.nyist.net/JudgeOnline/problem.php?pid=244
查看>>
C# 为什么使用了多线程界面假死?
查看>>
遍历打印目录文件
查看>>
IE6/7中不支持inline-block,如何解决
查看>>
做开发的三种能力
查看>>
MultipartResolver实现文件上传功能
查看>>
Javascript/jquery异步加载使用方法详解(转)
查看>>
将列【1,2,3】转换为【类别1,类别2,类别3】
查看>>
第八章 Libgdx输入处理(8)振动器
查看>>
Android访问php webservice
查看>>
不耐烦,不淡定,不会好好说话,为何如今遍地戾气?
查看>>
微信公众平台开发(37)百度魔图
查看>>
微信公众平台开发(44)历史上的今天
查看>>
distcc源码研究五
查看>>